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ABSTRACT: 
 
Aging is characterized by the accumulation of amyloid and prion-like proteins. However, the molecular 
mechanisms by which these proteins arise remain unclear. Here, we demonstrate that transcript errors 
generate amyloid and prion-like proteins in a wide variety of human cell types, including stem cells, brain 
organoids, and fully differentiated neurons. Intriguingly, some of these proteins are identical to proteins 
previously implicated in familial cases of amyloid diseases, raising the possibility that both familial and 
non-familial cases are caused by identical mutant proteins. However, transcript errors also generate 
amyloid proteins that have not been observed before, suggesting that aging cells are exposed to a 
second class of pathogenic proteins we are currently unaware of. Finally, we show that transcript errors 
are readily generated by DNA damage, a hallmark of human aging and a staple of multiple proteotoxic 
diseases, including Alzheimer’s disease. Together, these observations greatly expand our 
understanding of mutagenesis in human aging and disease and suggest a new mechanism by which 
amyloid diseases can develop. 
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INTRODUCTION: 
Protein aggregation is a defining hallmark of human aging and disease(1, 2). At a molecular level, protein 
aggregates are formed by misfolded proteins that form amorphous protein deposits or self-assemble into large, 
neatly organized amyloid fibers. These aggregates play an important role in various neurodegenerative diseases, 
including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Creutzfeld-Jakob Disease (CJD)(3, 4). 
However, they also contribute to the functional decline associated with normal aging and the pathology of a wide 
variety of other age-related diseases, including cancer(5), amyotrophic lateral sclerosis, diabetes, heart disease 
and cataracts(6-9). In familial cases of amyloid diseases, patients tend to carry a single point mutation that 
dramatically increases the amyloid propensity of the affected protein(10). However, why proteins misfold and 
aggregate in non-familial cases of amyloid diseases remains unclear. 

One long-standing hypothesis is that in non-familial cases of these diseases, amyloid proteins are 
generated by epi-mutations, non-genetic mutations that are only present in transcripts. For example, if a mistake 
was made during RNA synthesis(11-14) or RNA editing(15), a small cache of mutant proteins would be 
generated that could display amyloid or prion-like behavior. Although their initial number would be small, amyloid 
and prion-like proteins are defined by their ability to replicate themselves by binding to WT proteins through 
strong, non-covalent interactions and converting them to an amyloid state(16). Through this self-templating 
mechanism, a small cache of mutant proteins could rapidly grow in size and number, and eventually seed the 
amyloid fibers that characterize aging cells (fig. 1a). 

However, transcript errors are exceedingly difficult to detect, which has made it difficult to test this 
hypothesis in a comprehensive manner. To solve this problem, we recently optimized a new RNA sequencing 
tool termed circle-sequencing(17), which allows for high-fidelity sequencing of mRNA molecules (fig. S1). Here, 
we use circle-sequencing to demonstrate that transcript errors are ubiquitous in human cells, and that they 
indeed result in proteins with amyloid and prion-like properties. We support these observations with a variety of 
cellular, biochemical and biophysical experiments that demonstrate that the proteins generated by these errors 
can successfully convert WT proteins to an amyloid state, which then self-assemble into neatly organized 
amyloid fibers. Finally, we show that the amount of mutant proteins required to initiate large-scale protein 
aggregation is routinely breached as a result of DNA damage, a ubiquitous hallmark of aging cells. As a result, 
our experiments establish a direct, mechanistic link between DNA damage and protein aggregation, two of the 
major hallmarks of human aging and age-related diseases, including Alzheimer’s disease. In doing so, our 
experiments redefine the role of mutagenesis in human aging and disease, and suggest a new mechanism by 
which amyloid and prion diseases can develop. 
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RESULTS 
To test whether transcript errors give rise to amyloid or prion-like proteins, we probed the transcriptome of H1 
human embryonic stem cells (H1 ESCs), brain organoids, neurons with circ-seq, a massively parallel sequencing 
approach that uses consensus sequencing to enable high-fidelity RNA sequencing(17, 18). The brain organoids 
and neurons we sequenced were generated directly from the H1 ESCs (fig. S2), so that the genetic background 
between these models was consistent and the results could be compared to each other. In addition, we 
sequenced the H1 ESCs at 300x coverage to generate a custom-made reference genome and ensure that single 
nucleotide polymorphisms or low-level mutations could be excluded from downstream analyses (fig. S3). In total, 
these sequencing efforts yielded >160,000 transcript errors that affected >11,000 genes across all three models 
(fig. 1b). A complete list of the errors we detected can be found in the supplemental material attached to this 
publication. Interestingly, each model displayed a relatively similar error rate and spectrum, suggesting that the 
error rate of transcription is relatively independent of cellular fate, proliferation rate and differentiation status (fig. 

1c). We did observe a higher rate of A→G errors in the H1 ESCs cells though, which we previously found to 

reflect the impact of A to I RNA editing on the transcriptome(19).  
We then used two approaches to determine if the errors we had detected result in amyloid or prion-like 

proteins: a literature-based approach and a bio-informatic approach. In our literature-based approach, we 
focused on 70 proteins that are directly implicated in various amyloid and prion-like diseases, including PRNP 
(CJD and Gerstman–Sträussler–Scheinker syndrome(20)), APP (AD)(21)), SOD1 and FUS (Amyotrophic Lateral 
Sclerosis(22), and TTR (transthyretin amyloidosis) (table 1, table S1). Over the past 3 decades, thousands of 
mutations have been identified in these proteins that cause familial cases of proteinopathies. In most cases, 
these mutations greatly increase the amyloid and prion-like potential of the affected proteins. We reasoned that 
if transcript errors generate identical mutant proteins, they are likely to generate amyloid and prion-like proteins 
as well. To test this idea, we cross-referenced the errors we detected with various databases that catalogue 
germline mutations implicated in amyloid diseases, including Clinvar(23) and the human genome mutation 
database(24). Of the 1936 errors that affected amyloid and prion-like proteins, we identified 38 errors that give 
rise to mutant proteins previously seen in the clinic. For example, 2 of the errors we detected generate mutant 
versions of the SOD1(25) and FUS protein(26), both of which were previously identified in familial cases of 
amyotrophic lateral sclerosis (ALS) (table 1, table S1), while another error generated a mutant version of the 
human prion protein (PRNPA133V) that causes Gerstman–Sträussler–Scheinker syndrome (GSS)(27). Other 
errors generated pathological versions of TTR (amyloidogenic transthyretin amyloidosis), CSTB (progressive 
myoclonic epilepsy), TGFBI (corneal dystrophy), APP (AD), CRYGD (coralliform cataracts), TP53 (cancer), 
Medin (natural aging), and TUBA1A (tubulinopathies) and others. In addition, we identified 75 errors that affect 
key amino acids directly implicated in disease, although they mutated them to a different residue compared to 
the clinic. For example, one of these errors generates a mutant version of PRNP (PRNPV210A) that closely 
resembles a PRNPV210I mutation known to be one of the most common causes of familial CJD(28) (both alanine 
and isoleucine are aliphatic amino acids). Similar errors were present in transcripts that encode APP, CSTB, 
HNRNPA1 (inclusion body myopathy with FTD), TGFBI, TP53, TTR and 10 other proteins (table 1, table S1). A 
substantial portion of these errors is likely to affect the amyloid and prion-like behavior of these proteins as well. 

To confirm that the errors we identified through our literature-based approach indeed result in proteins 
with amyloid behavior, we selected two candidates for follow-up experiments. One of these errors generates a 
mutant version of SOD1 (SOD1G142E, fig. 2a-d) while the second error generates a mutant version of FUS 
(FUSR521H, fig. 2e-h). These mutant proteins were previously identified in familial cases of ALS(25, 26). We 
expressed these proteins in primary human fibroblasts, HEK293 cells and glioblastoma cells by lentiviral 
transfection (fig. 2, S4) and then imaged them by confocal microscopy. Consistent with the idea that transcription 
errors generate mutant proteins that display amyloid behavior, we found that both SOD1G142E and FUSR521H 
aggregated in all 3 cell types, while the WT proteins did not. In addition, we found that the mutant SOD1 and 
FUS proteins were mislocalized. While WT FUS is predominantly present in the nucleus (where it aids RNA 
splicing, gene expression and DNA repair(29)), the mutant protein was completely excluded from the nucleus 
and formed large punctate deposits throughout the cytoplasm (fig. 2e-h). These observations complement 
similar results by others (29-33). Similarly, SOD1 is normally distributed throughout the cytoplasm and the 
nucleus, but we found that SOD1G142E was excluded from the nucleus and formed large protein deposits in the 
cytoplasm (fig. 2b-d). Importantly, nuclear exclusion and protein aggregation of FUS and SOD1 are key 
components of the pathology associated with ALS(34, 35). Finally, we co-expressed WT and mutant SOD1 in 
the same cells and monitored their behavior. Intriguingly, we found that when co-expressed with SOD1G142E, WT 
SOD1 no longer distributed equally throughout the cells, but was excluded from the nucleus and assembled into 
the same amyloid deposits as SOD1G142E (fig. 2i-l), strongly suggesting that WT SOD1 was recruited by 
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SOD1G142E and converted to an amyloid state. We made similar observations for WT and mutant FUSR521H (fig. 
2l-o). WT FUS was almost always excluded from the nucleus in the presence of FUSR521H, and sequestered in 
cytoplasmic deposits with FUSR521H, although rare exceptions did occur (fig. S5). Consistent with the idea that 
SOD1G142E has amyloid properties, transmission electron microscopy (TEM) demonstrated that mutant SOD1 
can form amyloid fibers in vitro (fig. 2p, q). When taken together, these experiments provide an important proof 
of principle for the idea that transcription errors give rise to amyloid proteins. Moreover, because RNAPII 
constantly generates new mRNA molecules inside cells, and transcription by RNAPII is relatively error prone, 
(the error rate of transcription is approximately >100-fold higher than the mutation rate(36)), we conclude that 
transcription errors generate a continuous stream of amyloid and prion-like proteins in human cells. 
 

In addition to proteins directly connected to disease, we wondered whether transcription errors can also 
generate mutant proteins whose amyloid properties have not been characterized yet. To test this hypothesis, we 
used an unbiased bioinformatic approach to analyze the impact of errors on amyloid and prion-like proteins. 
First, we used AmyPred-FRL to analyze errors that affect amyloid proteins and found that 457 were predicted to 
increase their amyloid potential (table 1, S1). Second, we used the PAPA(37) to analyze errors that affect 
proteins with prion-like domains. Although the PRNP gene encodes the canonical prion protein in humans, many 
proteins are now known to contain prion-like domains. Mutations in these domains can greatly increase the prion-
like behavior of these proteins in a wide variety of contexts, including proteotoxic diseases. For example, 
mutations in the prion-like domain of HNRNPA1 and HNRNPAB2 increase the amyloid behavior of these proteins 
and can cause multisystem proteinopathies and ALS(38, 39). By applying this algorithm to our dataset, we found 
that 393 transcript errors are predicted to display increased prion-like behavior (table 2, table S2). 

Next, we extracted information from the  Prionscan(40), PLAAC(41) and Amyloid Protein Database(42) 
to build a comprehensive database of proteins that have the potential to display amyloid and prion-like features.  
We then cross-referenced this database with the transcription errors we detected to identify errors that are likely 
to enhance these features. To test the veracity of these predictions, we examined errors that affect the TP53 
protein in greater detail. TP53 is an essential tumor suppressor protein involved in DNA repair(34), transcription, 
cellular senescence and apoptosis, and aggregates in 15% of human cancers(5, 35-37). With the bio-informatic 
tools described above we identified 5 transcription errors that are likely to increase the amyloid propensity of 
TP53: TP53S149F, TP53G245S, TP53G279A, TP53S315F and TP53P318L.  When we mapped these mutations onto the 
crystal structure of TP53 we noticed that the S149F mutation (fig. 3a) is located in a loop at the edge of the TP53 

 -sandwich core (loop 146-WVDSTPPPGTR-156). Based on its location and the structural change it introduces 
(fig. 3b, c), we predicted that this mutation may increase the amyloid propensity of the local peptide sequence 

(the 146-WVDSTPPPGTR-156 loop) and enhance the interaction between the -sandwich cores of separate 

TP53 monomers, thereby leading to the assembly of the extended  -sheet structures that are characteristic of 

amyloid proteins (fig. 3b, c). Mutations in the loop at the edge of the -sandwich core of the TTR protein were 

previously shown to promote amyloid formation through a similar structure-based mechanism(43). To test this 
hypothesis, we expressed the core domain (aa 92-292) of WT and mutant TP53 in bacterial cells and analyzed 
the behavior of these proteins by TEM. Consistent with our predictions, we found that TP53S149F indeed 
aggregated into large protein deposits, while WT TP53 did not (fig 3d, e). These aggregates displayed Congo-
red birefringence under polarized light, a strong indicator of amyloid formation (fig. 3f, g). We conclude that in 
addition to amyloid proteins directly implicated in disease, transcription errors also give rise to novel mutant 
proteins that tend to form amyloid structures.  

Next, we decided to test if TP53S149F can convert WT TP53 to an amyloid state, similar to SOD1G142E and 
FUSR521H, and if so, how much TP53S149F was required to initiate this process. To answer this question, we added 
vanishing amounts of TP53S149F to a WT TP53 solution and found by TEM that 1% of TP53S149F (v/v) was 
sufficient to initiate the aggregation of the WT protein (fig. 3h). We confirmed these findings in a dynamic light 
scattering experiment (fig. 3i-k) that demonstrated that while WT TP53 was present at a size consistent with 
TP53 monomers, TP53S149F aggregated into deposits that were >100-fold larger in size. Moreover, when we 
added 2% (v/v) TP53S149F to the WT solution, we observed a disproportionate increase in TP53 aggregates that 
could only be explained by mutant-induced aggregation of WT proteins. Finally, we used atomic force microscopy 
(AFM) to characterize the cross-seeding behavior between WT and mutant TP53 further. First, we prepared a 
seeding solution of TP53S149F aggregates by sonication and centrifugation with an average particle size of 0.1 
µm as determined by multi-angle light scattering (MALS) and AFM. Particles that are 0.1 µm in size are roughly 
equivalent to ~800-1000 molecules, a number that could be generated by the translation of 1 or a few mutant 
transcripts (fig. 3l). We then mixed these particles into the WT TP53 solution (fig. 3m, n) at a 2% v/v ratio and 
observed a remarkable seed-dependent growth of WT TP53 fibers (fig. 3n). When given sufficient incubation 
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time, a 1:50 mixture of mutant:WT proteins created deposits that were visible to the naked eye (fig. 3o). Given 
the size of these aggregates, these deposits must be constructed almost exclusively from WT proteins, with the 
mutant proteins serving as the initial seed. 

To expand on these observations and ensure that this phenomenon is not caused by artifacts like AFM 
sample preparation (which involves drying samples on a mica surface), we developed a new hanging drop 
method to characterize the seeding process in solution (fig. 4a-c). First, we prepared a seeding solution of 
TP53S149F particles with an average size of 0.1 µm as determined by MALS and AFM (fig. S6). Then, we set up 
a 4x6 screening tray with a 1ml reservoir solution that contains the protein buffer and an increasing concentration 
of NaCl (0.3, 0.5, 0.7, 0.8, 1.0, 1.2M for columns 1-6, respectively). Finally, we added a 10µl WT TP53 solution 
(60µM) to a siliconized coverslip and placed a 1µl drop of TP53S149F seed particles immediately adjacent to it at 
different concentrations (0, 1.2, 6, or 12 µM from row A to B, C and D). Over time, the protein drops on the 
coverslip shrink as a function of the NaCl concentration, gradually increasing the protein concentration. We 
reasoned that if the mutant seed particles display amyloid potential, this increasing concentration will eventually 
trigger the conversion of WT proteins to an amyloid state at the drop-drop interface and lead to localized fiber 
growth (fig. 4c). Consistent with this idea, we observed robust growth of TP53 fibers under a light microscope 
at the WT:mutant interface, but not in the absence of the mutant protein (fig. 4d-e). This rod-like material 
displayed strong birefringence under polarized light, which is highly suggestive of amyloid structures (fig. 4f). 
Taken together, these biophysical experiments strongly support the idea that transcription errors create amyloid 
proteins that can convert WT proteins to an amyloid state, which initiates the formation of large amyloid fibers 
and deposits. In addition, they suggest that a limited number of mutant transcripts is sufficient to initiate this 
process. For example, if 2% of TP53S149F proteins is sufficient to initiate the aggregation of WT TP53, then 2% 
of TP53 transcripts carrying the TP53S149F error should be sufficient to initiate fiber formation as well. Similar 
thresholds were previously observed for other amyloid proteins, and it has been speculated that for prions, there 
may not be a safe dose at all(44). 
 
With this idea in mind, we decided to test if it is possible for 2% of transcripts to carry the same transcription 
error. Although this threshold can easily be reached if the number of transcripts generated from a gene is 
relatively low (<100 per cell), it is less clear if the same is true for highly transcribed genes. Interestingly though, 
it was previously shown that DNA damage can provoke the same mistake by RNA polymerase II during multiple 
rounds of transcription(14) (fig. 5a), so that up to 50% of transcripts can carry the same transcription error(45-
47). These studies were primarily performed on DNA repair deficient cells though, using a single DNA lesion 
placed on a plasmid. As a result, it is unclear how well these findings translate to a WT genome carefully wrapped 
in chromatin that is actively surveyed by DNA repair. Therefore, we designed a new, single cell sequencing 
approach to examine the impact of DNA damage on transcriptional mutagenesis. First, we treated mouse 
neuronal stem cells (NSCs) that were derived from the hippocampus for 1 hour with MNNG, a powerful mutagen 
that randomly generates O6-methyl guanine adducts (O6-me-G)(48). We chose hippocampal stem cells for these 
experiments because they are directly implicated in amyloid diseases(49), and O6-me-G adducts because they 
play an important role in human brain cancers(50, 51) and were recently implicated in the pathology of female 
patients with Alzheimer’s disease(52). In addition, we performed these experiments on non-dividing NSCs (fig. 
S7), so that the O6-me-G lesions we induced would not be fixed into mutations during DNA replication (a common 
mechanism to prevent mutations from confounding transcription error measurements(14, 45-47, 53)). After 
MNNG treatment, we provided the cells with fresh medium, and let them recover for increasing periods of time. 
We then sequenced the transcriptome of single cells at different timepoints (fig. 5b) to identify transcription errors 
that occurred in at least 10% of transcripts from a gene, with a minimum of 40 unique transcripts sequenced. 
These parameters also prevent direct damage to RNA molecules from affecting our measurements, because it 
is unlikely that this damage will affect the same nucleotide on multiple RNA molecules. We found that MNNG 
treatment resulted in a >40-fold increase in transcripts with identical errors after 16 hours of recovery time (fig. 
5c). The vast majority of these events (which we labeled pseudo-alleles for their ability to generate WT and 

mutant transcripts) were C→U errors, the most common error induced by O6-me-G lesions. Notably, no increase 

was detected in G→A errors, which would have occurred if O6-me-G lesions had been fixed into mutations, 

demonstrating that our experiment was not confounded by conventional mutagenesis. Consistent with this idea, 

we found that G→A errors did arise in dividing cells (fig. S7). In most cases, pseudo-alleles gave rise to 10-20% 
of mutant transcripts (fig. 5d), greatly exceeding the 2% threshold required for amyloid formation in vitro. 
Consistent with the idea that the error generated by these pseudo-alleles cause protein misfolding and 
aggregation, we found that treated cells displayed a substantial increase in markers for misfolded proteins and 
proteotoxic stress, particularly at the timepoint the errors reached their peak (fig. 5e). Accordingly, human cells 
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that display error prone transcription(54) display increased protein aggregation as well (fig. S8). We further note 
that the number of pseudo-alleles rose over time as more and more genes were transcribed, and were still 
present 16 hours after exposure, indicating that transcriptional mutagenesis is not only abundant after exposure, 
but also long-lasting, even in cells capable of DNA repair. Interestingly though, loss of DNA repair is increasing 
implicated in amyloid diseases(55). For example, it was recently reported that the main DNA repair protein for 
O6-me-G lesions in human cells (MGMT(51)) is hypermethylated in female patients with AD(52), suggesting that 
in these patients, pseudo-alleles could be present for an extended period of time. To test this hypothesis, we 
first confirmed that female AD patients indeed display reduced MGMT expression by Western blots (fig. 5f, S9). 
Consistent with a previous study, males did not display this trend (fig. 5g, S9). To mimic the impact of reduced 
MGMT expression on human cells, we deleted the yeast homologue of MGMT (MGT1) in the budding yeast S. 

cerevisiae, arrested them in G1 with -mating factor (fig. S10) and then repeated our experiment with MNNG. 
Similar to human cells, we found that WT yeast cells displayed an increase in pseudo-alleles immediately after 
exposure, which declined after DNA repair was able to remove these lesions from the genome (fig. 5h). 
However, in the absence of the MGMT homologue MGT1, the pseudo-alleles remained on the genome, causing 
transcriptional mutagenesis for an extended period of time. These observations confirm our recent findings, 
which show that MGT1 removes 90% of DNA lesions within a 6-hour timespan (Vermulst, BioRxiv 2023). Similar 
to neural stem cells, treated yeast cells displayed increased expression of autophagy genes, molecular 
chaperones and components of the ubiquitin-proteasome system, indicating that they are under proteotoxic 
stress (fig. 5i-l, S11). Consistent with the idea that these markers are upregulated due to transcript errors, we 
previously found that yeast cells that display error prone transcription also show increased markers of proteotoxic 
stress(13). In contrast, markers associated with translation (which is inhibited in times of proteotoxic stress) were 

downregulated (fig. S12). MGT1 cells showed a prolonged response of these markers, consistent with the 
prolonged presence of pseudo-alleles on their genome (5i-k, S12).  
 
In addition to transcription errors, it has been proposed that other molecular mistakes could result in amyloid and 
prion-like proteins as well, including off-target RNA editing(15). One of the best-known examples of RNA editing 
in the animal kingdom is seen in cephalopods(56) where ADAR1 edits adenine to inosine (A to I) in a sequence-

specific manner, an event that can be monitored by circ-seq as A →G errors(19). If off-target editing indeed 
results in mutant RNAs, then squid and octopi tissues that express high levels of ADAR1 should display high 
levels of off-target editing, while tissues that do not express ADAR1 should not. Consistent with this idea, we 
found that the optic lobe and stellate ganglia of cephalopods (which express high levels of ADAR1) displayed 
large amounts of off-target editing, while the gills (which express low levels of ADAR1) did not (fig. S13). These 
observations suggest that off-target editing is indeed one additional mechanism by which erroneous transcripts 
can be created. This possibility is particularly important from a medical perspective, as RNA editing tools are 
increasingly thought of as a new tool to treat symptoms of disease(57). To test whether RNA editing tools 
designed in the lab can result in off-target editing as well, we expressed an RNA editor specifically designed to 
edit the ATP1a3 transcript in human cells and monitored off-target editing. Similar to our observations in 
cephalopods, we found that these editors display a substantial amount of off-target editing, whether a guide RNA 
is present or not (fig. 5m). These events resulted in large numbers of rare (<2%) and common (>2%) mutant 
RNAs (fig. 5n), suggesting that these editors have the potential to induce protein aggregation in human cells. 
These observations suggest that all RNA editors designed for clinical purposes should go through rigorous 
testing prior to use, and that circ-seq is a highly sensitive tool to detect these potentially deleterious side effects.  
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DISCUSSION 
To identify the molecular mechanisms that underpin human aging and understand how these mechanisms drive 
age-related pathology, it will be essential to determine how amyloid and prion-like proteins are generated. Here, 
we demonstrate that transcript errors represent one of these mechanisms. Although transcript errors are 
transient events, amyloid and prion-like proteins are characterized by their ability to “replicate themselves” by 
converting WT proteins to an amyloid state. Thus, even a transient event like a transcription error could generate 
enough mutant proteins to trigger this reaction. 

One of the most intriguing observations from our experiments is that transcript errors generate mutant 
proteins that are already known to cause familial cases of amyloid disease. Thus, our experiments raise the 
remarkable possibility that both genetic and non-genetic cases of amyloid diseases could be caused by identical 
mutant proteins, only the mechanism by which they are generated is different (fig. 6). Interestingly, it was 
previously found that aggregates of tau have identical structures in both familial and non-familial cases of AD 
(58), suggesting that they were initiated by identical mutant proteins. 

Transcription errors also generate amyloid proteins that have not been characterized yet. The mutant 
version of TP53S149F we examined here is one example of this phenomenon. For example, we recently identified 
a number of additional novel mutant proteins that seem to have similar features compared to TP53S149F (data not 
shown). We conclude therefore, that in addition to the mutant proteins already known to play a role in amyloid 
diseases, transcription errors also generate amyloid proteins that have thus far escaped detection. However, 
these proteins are likely to have the same potential to affect cellular proteostasis and induce protein aggregation. 

Our quantitative experiments further show that 1-2% of TP53S149F is sufficient to initiate aggregation of 
WT TP53. Remarkably, this threshold is easily breached with the help of DNA damage, a form of cellular stress 
that has long been associated with protein misfolding diseases. For example, farmers that are exposed to the 
DNA damaging pesticides rotenone and paraquat have an increased risk for developing Alzheimer’s disease 
and Parkinson’s disease(59, 60), while the DNA damaging agent methylazoxymethanol (MAM) is suspected of 
being the pathogenic agent responsible for ALS/Guam-Parkinsonism-Dementia Complex, a disease that is 
characterized by protein aggregation and dementia-like symptoms(61-63). We recently discovered that MAM 
induces pseudo-alleles in mouse neural stem cells as well (Verheijen, bioRxiv 2023). Finally, DNA damage is 
ubiquitous feature of aging cells the primary risk factor for protein misfolding diseases. Our data, and data by 
others(45-47), provides a compelling rationale for these observations by demonstrating that DNA damage 
creates long-lasting pseudo-allele across the genome that give rise to a mixture of WT and mutant transcripts. 
As a result, 10-30% of the transcripts can carry the same transcription error, a ratio that greatly exceeds the 
amount required to initiate aggregation. Although our experiments focused on pseudo-alleles that were created 
by O6-me-G, it should be noted that other forms of DNA damage can generate pseudo-alleles as well(45-47), 
including oxidative DNA damage(14). Thus, other aspects of human aging that are known to produce oxidative 
damage (including mitochondrial dysfunction and inflammation) could trigger protein aggregation through a 
similar mechanism. A similar rationale applies to environmental factors such as pollution and lifestyle choices 
such as smoking. 

Remarkably, we found that after one treatment of MNNG, approximately 1 out of every 6,000 guanine 

bases was converted into a pseudo-allele, which is expected to affect 1 out 10 genes. Thus, one exposure to 
a DNA damaging agent could result in thousands of pseudo-alleles emerging across the genome, demonstrating 
the potential of DNA damage to generate large amounts of identical mutant proteins without the need to induce 
mutations: the damage itself is sufficient. 

Consistent with a role for DNA damage in protein misfolding diseases, it is now increasingly recognized 
that loss of DNA repair can exacerbate amyloid diseases as well. For example, DNA repair is thought to play an 
important role in ALS(55), and it was recently shown that the DNA repair gene MGMT is hypermethylated in 
female patients with AD(52). When we mimicked this phenomenon in yeast, we found that reduced DNA repair 
allows pseudo-alleles to persist on the genome for extended periods of time, creating vast amounts of mutant 
proteins and a prolonged presence of markers associated with loss of proteostasis. It has long been known that 
females are at a greater risk for AD compared to males, and our data suggests that reduced MGMT expression, 
followed by extended transcriptional mutagenesis, could help explain this sex-specific difference(64). 

Besides DNA damage, the fidelity of transcription can also be altered by other variables. For example, 
we previously found that the error rate of transcription increases with age in yeast(13) and flies, and is affected 
by epigenetic markers, cell type and genetic context(12, 19). Each of these variables could alter the rate with 
which amyloid proteins are generated. One important example of this idea was observed in patients with non-
familial cases of Alzheimer’s disease. In these patients, transcription errors occur on dinucleotide repeats in the 
APP and the UBB gene, two key proteins associated with Alzheimer’s disease. These errors generated 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.11.540433doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540433


shortened peptides that were later found to be present in the amyloid plaques that characterize the disease, 
suggesting that they play a role in pathogenesis(65, 66). We recently demonstrated that repetitive DNA 
sequences can increase the error rate of transcription up to a 100-fold in human cells, directly supporting this 
observation. Moreover, we used a novel mouse model to demonstrate that neurons in the hippocampus are 
especially prone to making these transcription errors, providing further evidence for a link between transcriptional 
mutagenesis and Alzheimer’s disease(19).  

Finally, it is important to note that it may not be necessary for transcription errors to create highly specific 
amyloid proteins to promote amyloid diseases. Surprisingly, we previously found that random transcription errors 
can affect protein aggregation as well. Because the primary impact of mistakes in protein coding sequences is 
protein misfolding(67), random errors tend to create a cache of misfolded proteins that affect the entire proteome. 
Although most of these misfolded proteins are benign, and do not affect the aggregation of disease related 
proteins directly, they do need to be degraded by the same protein quality control machinery. As a result, random 
errors can create enough misfolded proteins to overwhelm the protein quality control machinery, which then 
allows pathological amyloid proteins to evade degradation and seed aggregates(13). Thus, transcription errors 
may not only generate highly specific amyloid and prion-like proteins, as we demonstrate here, they may also 
generate the very conditions that allow these proteins to evade the protein quality control machinery and initiate 
aggregation. 
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FIGURES 
 
FIGURE 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1| Graphical representation of hypothesis and summary of transcription error data. A. We 
hypothesize that transcription errors could give rise to amyloid and prion-like proteins. This relatively small cache 
of mutant proteins can then form an amyloid seed that recruits WT proteins and converts them to an amyloid 
state to generate large amyloid fibers. B. Transcription errors were identified across the genome of H1 Human 
embryonic stem cells, brain organoids and human neurons. C-D. The error rate and spectrum of H1 Human 
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embryonic stem cells, brain organoids and human neurons is nearly identical. Error bars indicate standard error 
of the mean. 
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Table 1 
 

 
Table 1| Transcription errors affect proteins directly implicated in amyloid and prion diseases. Column 
1: Gene name. Column 2: Protein name. Column 3: Disease associated with protein. Column 4: Number of 
errors detected in transcripts that were derived from this gene. Column 5: Number of errors that generate mutant 
proteins identical to those seen in familial cases of amyloid diseases. Column 6: Number of errors that affect an 
amino acid (aa) known to be involved in disease, but mutate it to a different residue compared to the clinic. 
Column 6: Number of errors that increase the amyloid potential of these proteins as predicted by bio-informatic 
analysis (AmyPred-FRL). 
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 Table 2 
 

 
Table 2| Transcription errors affect proteins with prion-like domains. Column 1: Gene name. Column 2: 
Protein name. Column 3: Location of prion-like domain inside protein. Column 4: Number of errors detected in 
transcripts that were derived from this gene. Column 5: Number of errors that affect the prion-like domain. 
Column 6: The number of errors that increase the prion-like potential of these proteins as predicted by bio-
informatic analysis (PAPA). 
 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.11.540433doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540433


Figure 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2| Transcription errors result in proteins with increased amyloid behavior. A. A transcription error 
(Tr) was identified in the SOD1 transcript that mimics a mutation (Mut) implicated in amyotrophic lateral sclerosis. 
This error substitutes a guanine for an adenine base, resulting in a glycine (G) to glutamine (E) mutation at 
residue 142. B. WT SOD1 is soluble and present throughout the cell, including the nucleus. C. In contrast, 
SOD1G142E proteins form aggregates and are excluded the nucleus. D. Quantification of WT and mutant SOD1 
aggregation and mislocalization. Depicted are the % of cells with aggregates or mislocalized proteins. E. A 
transcription error was identified in the FUS transcript that mimics a mutation implicated in amyotrophic lateral 
sclerosis. This error substituted a guanine for an adenine base, resulting in an arginine (R) to histidine (H) 
mutation at reside 521. F. WT FUS is present in a soluble state in the nucleus, while FUSR521H (G) forms 
aggregates outside of the nucleus. H. Quantification of FUS aggregation and mislocalization. Depicted are the 
% of cells with aggregates or mislocalized proteins. I-K. When WT and SOD1G142E are expressed simultaneously, 
WT SOD1 is excluded from the nucleus and recruited into extranuclear aggregates. L. Quantification of SOD1 
colocalization with either N-terminal or C-terminal tags. M-O. WT and FUSR521H co-expression in primary human 
fibroblasts, demonstrating that mutant and WT FUS co-localize in cytoplasmic aggregates. P. Quantification of 
FUS colocalization with either N-terminal or C-terminal tags. Q. WT SOD1 does not form fibers under TEM, but 
SOD1G142E does (R). *  =P<0.05. ** = P<0.01 according to an unpaired t-test with Welch’s correction. Error bars 
indicate standard error of the mean. 
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Figure 3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3| Biophysical examination of WT and mutant TP53. A. A transcription error (Tr) was identified in a 
TP53 transcript that substitutes a uracil for a cytosine base, resulting in a serine (S) to phenyl-alanine (F) 
mutation at residue 149. B-C. Predicted structure of WT (B) and mutant TP53 (C). D. Transmission electron 
microscopy showed little or no aggregates of WT TP53, while TP53S149F induces large protein aggregates (E). 
F-G. Congo-red birefringence under polarized light indicates that TP53S149F forms amyloid fibrils (G), while WT 
TP53 does not (F). H. After addition of 1% TP53S149F to a solution of WT TP53 (v/v), the WT solution generated 
countless aggregates. I-K. Dynamic light scattering, which can be used determine the radius of protein particles, 
indicates that WT TP53 is primarily in a monomeric form (I), while mutant TP53 consists of aggregates greater 
than 1000nm (J). After 2% TP53S149F is added to a solution of WT TP53 (v/v), a large amount of TP53 aggregates 
emerges (K). L. TP53S149F aggregates were sonicated to create a seed solution of particles that are around 
0.1µm in size, which equates to 800-1000 proteins. (M) WT TP53 solution shows no apparent aggregation; (N) 
Adding the TP53S149F amyloid seed solution to WT TP53 in a 1:100 ratio induced fibril growth. O. Protein 
aggregates created by mutant TP53 form spontaneously and can be seen by the naked eye (arrow). 
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Figure 4 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4| A hanging drop method detects the amyloid and prion-like potential of proteins. A. A 4x6 screening 
tray was set up with a 1ml reservoir that contains protein buffer and an increasing concentration of NaCl. B. A 
10µl WT TP53 solution (60µM) was then added to a siliconized coverslip and a 1µl drop of TP53S149F seed 
particles was placed immediately adjacent at decreasing concentrations. C. If the mutant seed particles have 
amyloid potential, this event will trigger conversion of WT proteins at the drop-drop interface and lead to localized 
fiber growth D. If no TP53S149F is provided as seeding material, no fiber-like material forms in the WT TP53 
solution. E. However, if TP53S149F seeding material is provided, fiber-like material grows out of the WT solution. 
F. These fibers show strong birefringence under polarized light, suggestive of amyloid structures. 
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Figure 5 
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Figure 5| DNA damage and off-target RNA editing affect the fidelity of transcription. A. If DNA damage 
results in multiple rounds of error prone transcription, then multiple transcripts in a single cell should carry 
identical errors. B. When these transcripts are captured and tagged with UMIs, they can be grouped together, 
and their sequences can be compared to each other to search for identical errors that occur in multiple 
transcripts. In contrast, sequencing errors or RNA damage will only be present in one transcript. Blue bar: cell-
specific barcode. Multicolored bar: transcript UMI. Blue base: WT. Orange base: transcription error. Pink base: 

Sequencing error/RNA damage C. C →U Pseudo-alleles emerge after MNNG treatment created of mouse 

neuronal stem cells, while G→A errors (which would indicate conventional mutagenesis is occurring as well) do 

not * = P<0.05, **** = P< 0.0001 according to a Chi-squared test with Yates' continuity correction. D. Ratio of 
WT:mutant mRNAs identified. Only alleles with more than 10% mutant mRNAs are depicted. E. Dot plots of 
single cell gene expression profiles grouped by GO-terms indicate markers of proteotoxic stress are elevated in 
treated cells, particularly at 16hours, when the transcript error rate is the highest. Significance was ascertained 
by ANOVA test. FDR= False Discovery Rate. F. MGMT levels are decreased in all females with AD ** = P<0.01, 
unpaired t-test with Welch’s correction. G. MGMT levels are not decreased in males with AD, except for those 
with a APOE3/APOE4 genotype. H. Loss of MGT1, the yeast homologue of MGMT allows O6-me-G lesions to 
remain on the genome, resulting in greatly increased numbers of pseudo-alleles over time. **** = P< 0.0001 
according to a Chi-squared test with Yates' continuity correction. Consistent with the idea that these errors result 
in misfolded proteins, these cells displayed markers of proteotoxic stress, including upregulated autophagy 
genes (I), heat shock proteins (J) and proteins implicated in the ubiquitin-proteasome system (K). Depicted in in 
figure I and K is the average percentage change for all autophagy and ubiquitination-related genes identified by 
bulk RNA-seq. The genes depicted in J have been separated from several heat shock proteins that displayed 
unusually large increases in transcript levels (fig. S9). * = P<0.05, ** = P<0.01, **** = P< 0.0001 according to a 
paired t-test. L. Heat map of autophagy genes detected in WT and mutant cells. M. Error spectrum of human 
cells after transformation with plasmid that carries an editing target, the gRNA required to edit the target, and the 
editing enzyme. If the editing enzyme is present, large numbers of A to I editing events (A to G errors) were 
observed. N. Percentage of editing events that generate mRNAs with various mutant:WT ratios. Error bars 
indicate standard error of the mean. 
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Figure 6 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6| Model for the contribution of transcription errors to non-familial cases of disease. In familial 
cases of amyloid diseases, genetic mutations generate mutant protein with greatly increased amyloid potential. 
In non-familial cases, identical mutant proteins, as well as unique ones, may be generated by transcription errors. 
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 FIGURE S1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1 | Concept of the circle-sequencing assay. Data from traditional cDNA libraries are littered with RT 
(blue circles) and sequencing errors (orange circles) that are indistinguishable from true transcription errors (red 
circles). To remove these artifacts from our data, we circularize RNA (blue lines) prior to RT. These circularized 
molecules are then reverse transcribed in a rolling circle fashion to generate linear cDNA molecules made from 
tandem repeats of the template. If an error was present in the template, that error will be present in all copies of 
the cDNA molecule (yellow lines), while artifacts are present in only one. 
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FIGURE S2 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S2| brain organoids and neurons created from H1 ESCs. A. Brain organoids, visible by the naked 
eye, were generated from H1 ESCs. Approximately 60 organoids were generated for each biological replicate 

and cultured for 3 months to mature them. B. H1 ESC-differentiated Ngn2-neurons stained for DAPI and III-
tubulin, a pan-neuronal cytoskeletal marker showing neuronal grow projections. 
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Table S1 
 

 
Table S1| Errors detected in transcripts that code for amyloid proteins known to be implicated in disease, 
as well as proteins with amyloid cores. Column 1: Gene name. Column 2: Protein name. Column 3: Number 
of errors detected in transcripts that code for this protein. Column 4: Number of errors that generate the same 
mutant proteins as seen in familial cases of disease. Column 5: Number of errors that affect the same amino 
acid (aa) as affected in disease, but change it to a different residue compared to the clinic. Column 6: Number 
of errors that increase the amyloid potential of these proteins as predicted by bio-informatic analysis (AmyPred-
FRL). 
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Table S2 
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Table S2| Errors that affect the prion-like domain of proteins. Column 1: Gene name. Column 2: Number 
of errors detected in transcripts that derived from this gene. Column 3: Number of errors that generate mutant 
proteins identical to those seen in familial cases of prion-like diseases. Column 4: Number of errors that affect 
an amino acid (aa) known to be involved in disease, but mutate it to a different residue compared to the clinic. 
Column 5: Start of prion like domain (PrlD) in protein. Column 6: End of prion like domain in protein. Column 
7: Number of non-synonymous errors that affect the prion-like domain. . Column 8: Number of non-synonymous 
errors that affect the disordered region of the protein. Column 9: Number of errors that increase the prion-like 
potential of the protein as predicted by bio-informatic analysis (PAPA). 
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Figure S3 
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Figure S3| Median coverage of chromosomes in H1 ESCs cells by DNA-seq. A. Median coverage across 
all chromosomes. B. Percentage of bases that were covered at least 100x. This data was used to create a 
reference genome for the H1 ESCs and the brain organoids and neurons generated from these cells. 
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FIGURE S4 
 

 
Figure S4 | Amyloid behavior of SOD1 and FUS in HEK293 cells. In addition to primary fibroblasts, SOD1 
and FUS also aggregate and mislocalize in HEK293 cells. Depicted are the % of cells with aggregates or 
mislocalized proteins. Error bars indicate standard error of the mean. 
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Figure S5 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S4| FUS aggregation in primary fibroblasts. A-C. WT FUS (green) almost always colocalized with mutant 
FUSR521H in the cytoplasm (red), although rare exceptions were detected. D-F. Mutant FUSR521H is almost always 
present in the cytoplasm, although rare exceptions were detected where the nucleus was filled with FUSR521H. 
However, in those cases, FUSR521H did not form clear, functional foci similar to WT FUS. 
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Figure S6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S6 | MALS based calculations of TP53S149F particle size. 
 
  

Molar mass moments (g/mol) 

Mn 1.612 106  18.364% 

Mp 2.191 106  17.685% 

Mv N/A  

Mw 1.673 106  17.795% 

Mz 1.740 106  39.316% 

 

Polydispersity 

Mw/Mn 1.038  25.572% 

Mz/Mn 1.080  43.393% 

 

Rms radius moments (nm) 

Rn 118.0  5.8% 

Rw 119.9  5.6% 

Rz 121.9  5.3% 
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 Figure S7 
 
 

 
Figure S7| Mouse neural stem cells brought into a quiescent state. Mouse neural stem cells were either 
cultured in a proliferating or a quiescent state. Proliferation was assessed by Ki67 staining, cell size and shape 
and transcriptomic analysis. A. Proliferating mNSCs show bright Ki67 staining (green), while cells brought into 
quiescence by addition of bmp4 to the cell culture medium were not (B). C. Cells in a proliferating state show a 
distinct difference in size and shape compared to cells brought into a quiescent state (D). E-F. Single cell 
transcriptome analysis of dividing and quiescent mouse neural stem cells used in this study. G. Quiescent cells 

treated with MNNG show only an increase in C→U errors, indicative of transcription errors made on O6-meG 

lesions, while dividing cells also displayed an increase in G→A errors indicating that they have undergone 

conventional genetic mutagenesis as well. Error bars indicate standard error of the mean. 
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FIGURE S8 
 

Figure S8| Proteostat staining of WT and Polr2AE1126G cells. A. WT cells stained with proteostat, a dye 
that highlights protein aggregates. B. WT cells treated with MG132, which blocks the proteasome, leading to the 
accumulation of misfolded proteins and protein aggregates. C. Polr2AE1126G cells display a 3-fold increase in 
transcription errors. Consistent with the idea that transcription errors cause protein misfolding and protein 
aggregation, these cells display increased staining for proteostat. 
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FIGURE S9 
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E               F 
 

 
Figure S9| MGMT levels in female and male AD patients and carriers with or without an APOE4 allele. A. 
Western blot (A, C) used to quantify the levels of MGMT in females (fig. 5e) and males (5f). Ponceau staining 
(B, D) was used for normalization. N/A indicates samples not used for this study. E-F. APOE status of patients 
and controls used for figure 5e and S8A-D. 
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FIGURE S10 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S10| Cell cycle arrest of yeast cells with -mating factor. Cells were arrested with 50ng/ml -mating 

factor for 6 hours, resulting in characteristic pear-shape cell structures (A). After 6 hours, another 50ng/ml was 
added to the cells for overnight incubation leading to further alterations in cell structure (B). C. Cell cycle arrest 
was quantified by counting actively budding yeast cells and cells with canonical pear-shape structure induced 

by -mating factor. Error bars indicate standard error of the mean. 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.11.540433doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540433


 
Figure 11 
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C              D 

  
 
E 

Gene UT T=0 T=2 T=6 T=24 UT T=0 T=2 T=6 T=24

ATG1 -5 14 23 80 165 -2 2 67 70 405

ATG2 -1 10 9 36 41 0 6 25 26 104

ATG3 0 37 2 21 48 0 18 17 27 198

ATG4 -1 10 0 32 1 0 16 21 29 41

ATG5 0 57 43 81 0 0 26 19 41 4

ATG7 -2 12 -1 7 5 0 17 26 10 57

ATG8 0 79 12 54 38 0 34 44 96 210

ATG9 -2 18 7 18 71 -1 1 37 29 225

ATG10 0 47 57 91 171 -1 2 92 113 253

ATG11 0 25 22 32 60 0 22 33 59 200

ATG12 -1 39 28 65 103 0 16 38 75 189

ATG13 -4 107 9 26 38 -2 54 44 41 195

ATG14 -1 32 3 20 60 0 4 42 35 257

ATG15 -9 29 0 12 11 -3 40 27 16 123

ATG16 -15 79 15 66 238 0 2 41 42 287

ATG17 0 15 9 34 57 0 2 18 36 158

ATG18 0 24 1 1 -11 0 41 7 5 -6

ATG19 -2 3 1 1 -56 0 7 10 -2 -3

ATG20 -2 8 -1 9 4 -1 2 9 4 47

ATG21 -1 33 3 15 6 -1 18 19 14 35

ATG22 0 3 -1 13 -18 0 3 2 22 -15

ATG23 -2 26 10 35 16 -1 26 27 44 117

ATG26 -1 41 9 18 23 -1 52 43 31 84

ATG27 0 -5 -2 -2 -18 0 0 0 0 -14

ATG29 -4 53 -3 34 18 -2 2 10 3 85

ATG31 0 9 12 0 43 0 -8 7 0 140

ATG32 -1 61 20 61 146 0 48 41 69 289

ATG33 0 32 27 25 5 0 13 49 37 46

ATG34 1 27 2 6 16 0 2 11 4 66

ATG36 1 127 51 90 156 0 36 120 61 210

ATG38 0 36 17 51 38 0 8 42 58 104

ATG39 -4 94 104 350 1022 0 1 213 279 1427

ATG40 0 22 63 99 40 0 -1 19 72 89

ATG41 0 298 124 122 203 -1 94 24 148 196

ATG42 0 11 2 10 -3 0 2 21 8 7

Gene UT T=0 T=2 T=6 T=24 UT T=0 T=2 T=6 T=24

AHA1 0 22 84 38 1 0 8 55 54 13

HSF1 -1 40 32 37 28 0 31 63 69 87

HSP10 0 -10 1 -2 -1 0 -4 6 2 -21

HSP104 -4 -4 -2 1 -10 -2 -15 9 7 1

HSP12 0 40 15 63 1698 0 21 12 159 1515

HSP150 -1 -28 -5 20 20 0 -64 -2 42 23

HSP26 0 604 575 747 2701 0 258 684 1187 3009

HSP30 0 61 44 170 786 0 5 55 315 820

HSP31 0 1339 90 104 101 0 827 84 117 183

HSP32 11 227 124 450 1048 -9 49 200 640 1611

HSP33 -9 27 95 449 1052 -1 16 19 448 1660

HSP42 0 116 11 29 30 0 25 27 41 99

HSP60 0 -44 -3 -5 -29 0 -11 -1 1 -29

HSP78 0 29 4 15 8 0 4 31 30 68

HSP82 0 27 26 4 10 -1 38 17 42 72

SSA1 0 -4 10 -10 -47 0 3 16 0 -38

SSA2 -1 -76 -3 -72 -245 0 -17 0 -29 -319

SSA3 0 61 11 14 875 0 74 15 102 1409

SSA4 -1 328 51 31 304 0 294 61 117 526

Gene UT T=0 T=2 T=6 T=24 UT T=0 T=2 T=6 T=24

BUL1 -2 19 2 7 -3 -1 32 14 12 31

BUL2 -3 18 4 20 10 -1 45 13 20 53

CUE1 0 1 -3 -2 -2 0 -4 1 -3 0

CUE2 0 35 19 134 84 0 70 40 149 186

CUE3 0 29 1 6 11 0 31 2 6 25

CUE4 0 31 78 55 4 0 28 99 36 15

CUE5 0 3 -3 -4 -23 0 3 0 -8 -8

HUB1 0 31 15 28 55 1 11 42 49 74

HUL4 -1 2 -33 -4 4 -1 -14 -1 -7 71

HUL5 -1 28 3 0 -6 0 39 7 1 24

RFU1 0 57 71 61 91 0 137 31 108 137

RUB1 0 23 2 1 -1 0 6 10 3 0

TUL1 -3 14 -4 3 -1 -1 10 19 4 35

UBA1 -1 0 -2 -2 -32 -1 11 5 -8 -10

UBA2 0 15 0 1 3 0 30 3 1 8

UBA3 -1 9 20 56 -4 -1 13 23 42 6

UBA4 0 53 8 5 -2 0 74 5 12 4

UBC1 0 5 3 0 0 0 1 7 4 5

UBC11 0 126 65 110 171 1 108 80 217 223

UBC12 -1 5 5 5 2 0 0 2 10 5

UBC13 0 13 22 12 6 0 22 21 26 12

UBC4 0 0 7 0 -11 0 -35 8 1 -27

UBC5 0 46 19 97 32 -1 58 57 110 112

UBC6 0 1 0 0 -10 0 4 1 0 -8

UBC7 0 0 -3 0 -32 0 -27 9 1 -11

UBC8 0 7 -1 7 82 0 -6 7 12 197

UBC9 0 -6 -1 0 -1 0 -23 0 1 -8

UBI4 0 101 3 22 0 0 57 21 29 19

UBP1 0 48 1 3 26 0 86 1 5 108

UBP10 -2 46 46 88 149 -1 175 63 109 334

UBP11 0 6 -9 4 0 0 -1 8 -5 11

UBP12 -1 10 0 2 26 0 9 1 7 111

UBP13 -1 8 -5 2 0 0 9 -3 -3 4

UBP14 -1 -4 -3 -1 -8 0 7 1 0 2

UBP15 -2 25 -1 -2 3 -1 28 5 -2 48

UBP16 -1 33 2 11 56 -1 -3 24 17 155

UBP2 -1 12 -3 -1 -2 0 7 1 -1 4

UBP3 -1 18 21 5 2 -1 48 29 26 19

UBP5 -2 9 21 92 -7 0 5 44 71 12

UBP6 0 21 0 -2 -13 0 15 2 -1 -3

UBP7 -4 11 5 6 5 -1 10 22 3 25

UBP8 -1 28 0 5 56 0 43 14 6 103

UBP9 0 6 10 63 63 -1 -2 46 45 168

UBS1 -1 16 1 15 21 0 -11 7 9 63

UBX2 -2 15 1 16 8 0 25 29 35 37

UBX3 0 58 11 18 46 0 7 12 21 157

UBX4 0 50 10 6 11 0 49 15 8 36

UBX5 -1 37 1 6 -15 -1 36 16 5 12

UBX6 0 378 30 68 141 0 282 46 66 250

UBX7 0 6 -11 -2 -10 0 2 -3 -10 -4

UCC1 0 54 17 64 73 0 63 33 58 125

UFD1 1 38 11 9 20 0 48 12 13 82

UFD2 -1 5 -5 -3 -13 -1 13 0 -4 2

UFD4 -3 2 7 6 19 -2 31 11 5 102

ULA1 0 16 -2 -1 -7 0 7 -1 -4 3

ULS1 -4 -1 8 24 21 -2 6 17 24 88

UMP1 0 29 17 2 -9 0 12 16 3 -32

URM1 0 -16 12 33 4 0 -34 28 38 27

YUH1 0 20 5 1 -1 0 8 2 0 -3
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Figure S11| Transcriptome analysis of WT and mgt1 yeast cells. A. Heat shock genes are upregulated at 
the transcript level in cells treated with MNNG. B. Genes related to ubiquitin-mediated protein degradation are 
upregulated at the transcript level in cells treated with MNNG as well. In both cases, transcripts remain 
upregulated at higher levels in cells that cannot repair O6-MeG lesions. C-E. Average difference in gene 
expression between untreated samples (UT) and samples treated with MNNG at various timepoints. T=0 was 
taken immediately after exposure, T=2 was taken 2 hours after exposure, T=6 was taken 6 hours after exposure, 

and T=24 was taken 24 hours after exposure. WT cells are depicted in yellow, and MGT1 cells are depicted in 
blue. C depicts autophagy genes, D Ubiquitin related genes and E heat shock genes. 
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FIGURE S12 
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 C continued        D 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Figure S12| Transcriptome analysis of WT and mgt1 cells. A. Ribosomal subunits are downregulated at the 

transcript level in WT cells treated with MNNG. B. Ribosomal subunits genes are also downregulated at the 

transcript level in mgt1  cells treated with MNNG, which display an extended period of downregulation compared 
to WT cells.  C. Average difference in gene expression between untreated samples (UT) and samples treated 
with MNNG at various timepoints. T=0 was taken immediately after exposure, T=2 was taken 2 hours after 
exposure, T=6 was taken 6 hours after exposure, and T=24 was taken 24 hours after exposure. WT cells are 

depicted in yellow, and MGT1 cells are depicted in blue D. Average percentage decrease of all ribosomal 

subunits depicted in A-C. **** = P<0.0001 according to a paired t-test. Error bars indicate standard error of the 
mean. 
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FIGURE S13 
 
 

 
Figure S13| A. Error rate and spectra of squid and octopi. A. The optic lobe of squids (n=1) display a 
substantial increase in A to G substitutions caused by off-target A to I editing by high ADAR1 expression. ADAR1 
expression is low in the gills (n=1) and as a result little off-target editing is seen. B. The optic lobe and stellate 
ganglia of octopi (which express ADAR1 at high levels) display substantial A to I editing (n=1), but the gills (which 
express ADAR1 at low levels) do not (n=1). Error bars indicate upper and lower limits. 
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METHODS 
 

H1 hESC Cell culture 
H1 hESCs were purchased from WiCell in Wisconsin (WA01) and cultured in TeSR medium in Matrigel 
coated 10cm plates. Cells were grown at 5% O2 tension to better mimic the conditions inside the human 
body and reduce oxidative damage as a result of normoxic conditions. To passage cells and prior to 
collection of RNA and DNA, cells were gently treated with 2 µg/ml Dispase mixed with DMEM/F12, 
washed with PBS and scraped off the plate using a glass pipette. DNA and RNA were then isolated 
with standard phenol chloroform and Trizol methods. 
 
Library Construction and Sequencing 
Library preparation 1100ng of enriched mRNA was fragmented with the NEBNext RNase III RNA 
Fragmentation Module (E6146S) for 25 minutes at 37°C. RNA fragments were then purified with an 
Oligo Clean & Concentrator kit (D4061) by Zymo Research according to the manufacturer’s 
recommendations, except that the columns were washed twice instead of once. The fragmented RNA 
was then circularized with RNA ligase 1 in 20 µl reactions (NEB, M0204S) for 2 hours at 25°C after 
which the circularized RNA was purified with the Oligo Clean & Concentrator kit (D4061) by Zymo 
Research. The circular RNA templates were then reverse transcribed in a rolling-circle reaction by first 
incubating the RNA with for 10 minutes at 25°C to allow the random hexamers used for priming to bind 
to the templates. Then, the reaction was shifted to 42°C for 20 minutes to allow for primer extension 
and cDNA synthesis. Second strand synthesis and the remaining steps for library preparation were 
then performed with the NEBNext Ultra RNA Library Prep Kit for Illumina (E7530L) and the NEBNext 
Multiplex Oligos for Illumina (E7335S, E7500S) according to the manufacturer’s protocols. Briefly, 
cDNA templates were purified with the Oligo Clean & Concentrator kit (D4061) by Zymo Research and 
incubated with the second strand synthesis kit from NEB (E6111S). Double-stranded DNA was then 
entered into the end-repair module of RNA Library Prep Kit for Illumina from NEB, and size selected 
for 500-700 bp inserts using AMPure XP beads. These molecules were then amplified with Q5 PCR 
enzyme using 11 cycles of PCR, using a two-step protocol with 65°C primer annealing and extension 
and 95°C melting steps. Sequencing data was converted to industry standard Fastq files using 
BCL2FASTQv1.8.4. 
 
Error Identification 
We have developed a robust bioinformatics pipeline to analyze circ-seq datasets and identify 
transcription errors with high sensitivity(12, 17). First, tandem repeats are identified within each read 
(minimum repeat size: 30nt, minimum identity between repeats: 90%), and a consensus sequence of 

the repeat unit is built. Next, the position that corresponds to the 5 end of the RNA template is identified 
(the RT reaction is randomly primed, so cDNA copies can “start” anywhere on the template) by 
searching for the longest continuous mapping region. The consensus sequence is then reorganized to 

start from the 5 end of the original RNA fragment, mapped against the genome with tophat (version 
2.1.0 with bowtie 2.1.0) and all non-perfect hits go through a refining algorithm to search for the location 

of the 5 end before being mapped again. Finally, every mapped nucleotide is inspected and must pass 
5 checks to be retained: 1) it must be part of at least 3 repeats generated from the original RNA 
template; 2) all repeats must make the same base call; 3) the sum of all qualities scores of this base 
must be >100; 4) it must be >2 nucleotides away from both ends of the consensus sequence; 5) each 

base must be covered by  100 reads with <1% of these reads supporting a base call different from the 
reference genome. This final step filters out polymorphic sites and intentional potential RNA-editing 
events. For example, if a base call is different from the reference genome, but is present in 50 out of 
100 reads, it is not labeled as an error but as a heterozygous mutation. A similar rationale applies to 
low-level mutations and RNA editing events. These thresholds were altered to detect different types of 

editing events, including common editing events. Each read containing  1 mismatch is filtered through 

a second refining and mapping algorithm to ensure that errors in calling the position of the 5 end cannot 
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contribute to false positives. The error rate is then calculated as the number of mismatches divided by 
the total number of bases that passed all quality thresholds.  
 
Brain organoid culture and generation 
H1 ESC colonies were maintained with daily media change in mTeSR (STEMCELL Technologies, 

#85850), supplemented with a final concentration of 5 M XAV-939 (STEMCELL Technologies, 
#72672) on 1:100 geltrex (GIBCO, #A1413301) coated tissue culture plates (CELLTREAT, #229106) 
and passaged using ReLeSR (STEMCELL Technologies, #100-0484). Cells were maintained below 
passage 50 and periodically karyotyped via the G-banding Karyotype Service at Children’s Hospital 
Los Angeles. To generate dorsally patterned forebrain organoids, we modified the method previously 
described in Kadoshima et al (68). We eliminated the need for growth under 40% O2, the need for cell 
aggregates to be periodically bisected, and the use of high O2 penetration dishes, by adapting the 
cultures to growth in spinner-flask bioreactors. Specifically, on day 0, feeder-free cultured human PSCs, 
80–90% confluent, were dissociated to single cells with Accutase (Gibco), and 9,000 cells per well were 
reaggregated in ultra-low cell-adhesion 96-well plates with V-bottomed conical wells (sBio 
PrimeSurface plate; Sumitomo Bakelite) in Cortical Differentiation Medium (CDM) I, containing 
Glasgow-MEM (Gibco), 20% Knockout Serum Replacement (Gibco), 0.1 mM Minimum Essential 
Medium non-essential amino acids (MEM-NEAA) (Gibco), 1 mM pyruvate (Gibco), 0.1 mM 2-
mercaptoethanol (Gibco), 100 U/mL penicillin, and 100 μg/mL streptomycin (Corning). From day 0 to 
day 6, ROCK inhibitor Y-27632 (Millipore) was added to the medium at a final concentration of 20 μM. 
From day 0 to day 18, Wnt inhibitor IWR1 (Calbiochem) and TGFβ inhibitor SB431542 (Stem Cell 
Technologies) were added at a concentration of 3 μM and 5 μM, respectively. From day 18, the floating 
aggregates were cultured in ultra-low attachment culture dishes (Corning) under orbital agitation (70 
rpm) in CDM II, containing DMEM/F12 medium (Gibco), 2mM Glutamax (Gibco), 1% N2 (Gibco), 1% 
Chemically Defined Lipid Concentrate (Gibco), 0.25 μg/mL fungizone (Gibco), 100 U/mL penicillin, and 
100 μg/mL streptomycin. On day 35, cell aggregates were transferred to spinner-flask bioreactors 
(Corning) and maintained at 56 rpm, in CDM III, consisting of CDM II supplemented with 10% fetal 
bovine serum (FBS) (GE-Healthcare), 5 μg/mL heparin (Sigma), and 1% Matrigel (Corning). From day 
70, organoids were cultured in CDM IV, consisting of CDM III supplemented with B27 supplement 
(Gibco) and 2% Matrigel. 
 
Neuronal culture and generation 

H1ESCs were grown to confluency, split with accutase and seeded at a density of 3105 cells per well 
of a coated 6-well plate in mTeSR supplemented with 10μM rock inhibition. Cells were then transduced 
with hNGN2 and RTTA lentiviruses to obtain >90% infection efficiency using 4 μg/ml polybrene. mTeSR 
was changed daily until the cells were ready to split into a single-cell suspension with accutase, and 

the seeded directly into N2 media, so that approximately 1.2  106 cells were present per 10cm dish. 
After 1 day, the N2 media was replaced with N2 media supplemented with puromycin at a concentration 
of 0.7 ug/ml to enable selection for transduced clones, which is complemented 2 days later with B27. 
The media was then replaced with N2 B27 media supplemented with 2 uM Ara-C (1-β-D-Arabino-
furanosylcytosine) with ½ media change every other day. Cells were then allowed to grow and mature 
into neurons for 2 weeks before RNA isolation and error measurements. 

Lentiviral generation and transduction: HEK293T cells were plated at 25% confluency and then 
transfected with plasmids that carry WT of or mutant versions of various proteins using Origene’s 
lentiviral packaging kit (TR30037). Medium was replaced after 18 hours of incubation and viral particles 
were harvested 24 and 48 hours later and filtered through a 0.45μm PES filter. The particles were then 

concentrated using a sucrose gradient in a Beckman ultracentrifuge at 70,000xg for 2.5 hours at 4C. 
Afterwards, the viral pellets were resuspended in 25μL ice cold dPBS for every 15mL of viral medium 
spun down. AG10215 fibroblasts and U87 glioblastoma cells were then transduced with the 
concentrated viral particles at various MOIs 5 in antibiotic-free complete medium with 8μg/mL of 
polybrene. Cells were incubated for 18-24 hours before medium was changed to complete medium. 
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Antibiotic selection for transduced cells began 48 hours after transduction and fluorescence assessed 
with a Leica Stellaris confocal microscope. 
 
Mouse neural stem cell culture: Cells were cultured at 37°C in 5% CO2 and 5% O2 on PLO- and 
laminin-coated wells in serum-free media (NSC media) containing 1x DMEM/F12 (Invitrogen, 
10565018), 1x pen/strep (Invitrogen 15140122), 1xB27 (Invitrogen, 17504044), 20ng/ml FGF2 

(PeproTech, 100-18B), 20ng/ml EGF (PeproTech, AF-100-15) and 5g/ml heparin (Sigma, H3149). 
For quiescence induction, cells were grown for at least 3 days in the same medium as described above, 
but without FGF2 and with the addition of 50ng/ml BMP-4 (Fisher Scientific, 5020BP010).  
 
MGMT protein levels: Immunoblotting: 20ug of nuclear lysates were boiled at 75°C under denatured 
conditions and resolved on 4-20% gradient gels. Proteins were electroblotted using a Criterion blotter 
(Bio-Rad Laboratories, Hercules, CA) and transferred onto 0.45um polyvinyl difluoride membranes. 
Membranes were stained using Revert 700 fluorescent protein stain as a loading control and imaged 
prior to blocking with Intercept blocking buffer (LI-COR Biosciences, Lincoln, NE). Membranes were 
incubated overnight for 16 hours with 1:500 MGMT primary antibody (67476-1-Ig; Proteintech, 
Rosemead, IL). Membranes incubated with IRDye 800CW and/or 700CW secondary antibodies and 
visualized with a LI-COR Odyssey C1920. Densitometry was quantified with ImageJ and normalized 
by total protein per lane. 
 
Protein expression and purification: TP53 (aa 92-292) clones in Pet28a were transformed into 
Rosetta DE3 pLysS competent cells (Novagen) and induced by 1mM IPTG at 18 ° overnight. Then they 
were purified by Ni-NTA agarose (Qiagen). After additional purification by Mono S column (GE 
Healthcare) and buffer exchange, they were loaded onto Superdex 75 gel filtration column (GE 
Healthcare) running on an ÄKTA FPLC system. SOD1 (aa 1-154) clones in Pet28a were transformed 
into Rosetta DE3 pLysS competent cells (Novagen) and induced by 1mM IPTG at 18 degree overnight. 
Then they were purified by Ni-NTA agarose (Qiagen), and which were further purified by Superdex 75 
gel filtration column (GE Healthcare) running on an ÄKTA FPLC system 
 
Transmission electron microscopy, atomic force microscopy, fiber growth and hanging drop 
method. For TEM, protein samples were spotted on carbon-coated Formvar grid (Ted Pella). The 
samples were stained with nanoW/uranyl acetate before air drying. The images were taken on Talos 
F200C G2 at 80 kV at the Core Center of Excellence in Nano Imaging (CNI). For AFM, protein samples 
of different seeding conditions were spotted on MICA sheets before loading on Dimension Icon(Bruker), 
with SCANASYST-AIR probe in ScanAsyst mode. Different dilution ratios were tested for the best 
visualization condition. To monitor fiber growth inside wells or by the hanging drop method, protein 
samples of different seeding and dilution conditions were set up either in wells or hanging drop manner. 
All samples were observed under polarized light to ensure fiber structure existence. A range of high 
concentrations of NaCl was used in the mother liquor of the hanging drop tray to induce the necessary 
evaporation. 
 
Single cell experiments 

Cells were treated for 1 hour (mNSCs) or 40 minutes (yeast) with 10g/ml MNNG. Cells were then 
counted with a MacsQuant cell counter and loaded onto 10xGenomics chip for GEM preparation 
according to 10x Genomics protocols, so that approximately 5,000 cells would be captured inside 
GEMs. expected for. For yeast cells, 8,000 cells were loaded with the expectation that that would result 

in 5,000 successful GEMs as well. In addition, 1l of zymolyase was added to the cell suspension to 
facilitate the removal of the yeast cell wall. Results were then analyzed by CellRanger software, and 
on average, 2,000-9,000 single cells passed QC thresholds and were successfully sequenced for each 
replicate. 
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Seurat processing for mNSC single cell RNA-seq 
CellRanger output folders were imported for processing in R v3.6.3 using Seurat v3.2.2(69). Runs from 
2 independent batches were merged together for analysis. To retain only high-quality cells, we applied 
filters nFeature_RNA > 1000 & percent.mito < 20. To determine likely cell cycle stage, a list of mouse 
cell cycle genes was obtained from the Seurat Vignettes 
(https://www.dropbox.com/s/3dby3bjsaf5arrw/cell_cycle_vignette_files.zip?dl=1), derived from a 
mouse study(70). Cell cycle phase was predicted using these genes, and using the function 
CellCycleSorting to assign cell cycle scores to each cell. Likely Doublets were identified using 
DoubletFinder 2.0(71), and removed from downstream processing. Reciprocal PCA was used to 
integrate data from the 2 cohortsand mitigate batch effects, using the top 7500 most variable genes 
and with k = 10. To determine whether proteostasis-related terms were differentially regulated in 
response to DNA-damage in quiescent NSCs at the single-cell level, we leveraged the UCell robust 
single-cell gene signature scoring metric implemented through R package ‘UCell’ 1.3.1(72). Cell-wise 
UCell scores were computed for selected GO terms related to proteostasis. Genes associated to these 
GO terms were obtained from ENSEMBL Biomart (version 109; accessed 2023-04-22), to retain 
relationships with all evidence codes except NAS/TAS, which nonexistent experimental support. For 
analysis of statistical significance, we used ANOVA to compare the distribution of UCell scores across 
time points and is reported for each gene set, and p-values were corrected for multiple hypothesis 
testing using the Benjamini-Hochberg method. 
 
Pseudo-allele detection. Sequencing reads are first processed with the Cell Ranger Pipeline100. For 
each cell, reads with the same UMI (i.e. PCR duplicates) are collapsed into a consensus sequence, 
which is incorporated into a pileup file summarizing the sequence of each unique transcript at each 
genomic position in each cell. Positions covered by at least 40 unique transcripts are retained for 
downstream analysis and those with at least 10% of unique bases divergent from genomic DNA are 
compiled into a final output file for each cell. 
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